Comparing Potential Total Dissolved Gas (TDG) Mortality in Chinook Salmon Juveniles Below Big Cliff and Foster Dams

Eric Parkinson¹, Tom Porteus¹, Norman Buccola², Christopher Nygaard², and Murdoch McAllister¹

¹UBC ²USACE

Estimating TDG Mortality: Review from 2023

We want to quantify the population response to TDG patterns

The Structure of the Dataset*

- Tailwater is divided into <u>Reaches</u> and <u>Segments</u>
- <u>Depth and Velocity</u> is modeled for each segment over a range of <u>discharge</u>
- <u>TDG is predicted</u> for each segment X discharge, validated by field data from monitoring stations at the end of each Reach

Empirical Estimates of TDG Dissipation

• TDG dissipates exponentially with distance from source* $C=C_0 e^x$ $C = C_0 e^{-3.43L(q+5.6)^{-0.63}}$ $C = C_0 e^{-6.37L(q-11.0)^{-0.65}}$

*L = distance downstream. q = discharge in m^3/se

TDG Dissipation

• Dissipation takes longer in the South Santiam (low turbulence)

^{• 1}/5th of excess TDG is generally oxygen, which can be metabolized

TDG Dissipation

- Decline is slower at high discharge and in the South Santiam R
 - Water covers distances in shorter times
 - and Deeper water reduces the surface to volume ratio

Modeling Survival

- Start with predictions from lab studies*
- Time to Gas bubbles, 10% mortality, 50% Mortality*

^{*}Pleizier et al. 2020

South Santiam: Survival under a single set of conditions

• Segment Survival is estimated from TDG and the time that it takes the fish to pass through the segment (i.e. exposure time) Minimum Segment

Survival across a range of conditions

• Survival is low only when:

Fish migration rate is very slow; Water velocity is high; Excess TDG is >20%

						Slow	Med									
_	Survival (Foster to Waterloo, 23 km)						South Santiam oster to Waterloo									
/ater locity m/s)			Excess TDG (%)		Fish Velocity	0.007 m/s	Excess TDG (%)		Fish Velocity	0.014 m/s	Excess TDG (%)		Fish Velocity	0.028 m/s		
3	Vel (I	Discharge (cfs)	20	25	30	35	20	25	30	35	20	25	30	35		
	0.61	400	96%	95%	90%	63%	98%	98%	97%	91%	99%	99%	99%	97%		
	0.69	600	95%	93%	85%	40%	98%	97%	95%	85%	99%	Ligh	8%	95%		
	0.81	900	95%	91%	76%	13%	98%	97%	93%	75%	99%	піgн	7%	93%		
	0.94	1,400	93%	87%	58 %	1%	97%	95%	89%	57%	99% S	urviv	al 5%	89%		
	1.11	2,200	91%	79%	30%	0%	97%	93%	82%	29%	99%	97%	94%	82%		
	1.28	3,500	87%	64%	5%	0%	95%	90%	68%	5%	98%	96%	91%	68%		
	1.47	5,500	79%	3 9%	004	004	94%	84%	44%	0%	98%	95%	86%	44%		
	1.72	8,700	65%	10%	Lo	W	91%	73%	14%	0%	97%	92%	76%	14%		
	1.97	13,700	41%	0%	Surv	vival	85%	53 %	1%	0%	95%	88%	57 %	1%		

Survival across a range of conditions

• Survival is higher in the North Santiam because TDG dissipates more rapidly, which shrinks the danger zone

		South	Santi	am			North	i Santia	m			
	>	Survival (F	oster to V	Vaterloo,	23 km)			Survival (B				
ater	locity n/s)	,	Excess	TDG (%)	Fish Velocity	0.015 m/s	water velocity		TDG		Fish Velocity	0.015 m/s
3	Vel (1	Discharge (cfs)	20	25	30	35	1.86	Discharge (cfs)	20	25	30	35
	0.53	500	98%	98%	96%	88%	0.86	500	99%	98%	98%	98%
	0.61	800	98%	97%	94%	82%	0.97	800	98%	98%	98%	96%
	0.75	1,100	98%	96%	92%	72%	1.14	1,100	98%	98%	97%	94%
	0.89	1,700	97%	95%	88%	55 %	1.31	1,500	98%	97%	96%	91%
	1.06	2,400	97%	94%	82%	32%	1.47	2,200	98%	97%	94%	85%
	1.25	3,600	96%	91%	72%	9%	1.69	3,200	97%	96%	92%	75%
	1.50	5,300	95%	87%	55%	1%	1.94	4,500	97%	95%	88%	58%
	1.81	7,700	93%	80%	31%	0%	2.22	6,500	96%	93%	82%	33%
	2.14	11,300	90%	69%	8%	0%	2.56	9,300	95%	90%	71%	9%

Nouth Coutions

Survival is High at realistic smolt migration rates

- Smolts moving at 10km/day do not stay in the high TDG zone for long
 - •Migration rates are faster at high discharge in the Columbia (Berggren & Filardo 1993)

10 km/day

•High TDS zones are much longer in larger rivers and in reservoirs

	locity m/s)	Survival (F	oster to V	Vaterloo,	23 km)		23 km)		7/			
/ater		,	Excess TDG (%)		Fish Velocity	0.015 m/s		Excess TDG (%)		Fish Velocity	0.116 m/s	
<	Ve)	Discharge (cfs)	20	25	30	35	Discharge (cfs)	20	25	30	35	
	0.53	500	98%	98%	96%	88%	500	100%	100%	100%	99%	
	0.61	800	98%	97%	94%	82%	800	100%	100%	99%	99%	
	0.75	1,100	98%	96%	92%	72%	1,100	100%	100%	99%	99%	
	0.89	1,700	97%	95%	88%	55 %	1,700	100%	100%	99%	98%	
	1.06	2,400	97%	94%	82%	32%	2,400	100%	99%	99%	98%	
	1.25	3,600	96%	91%	72%	9%	3,600	100%	99%	99%	97%	
	1.50	5,300	95%	87%	55 %	1%	5,300	100%	99%	98%	96%	
	1.81	7,700	93%	80%	31%	0%	7,700	99%	99%	98%	94%	
	2.14	11,300	90%	69%	8%	0%	11,300	99%	99%	97%	92%	

Other Considerations in TDG Survival Modeling

- Mitigating factors
 - Depth compensation: relatively shallow depths (2-3m) give full protection
 - Seasonal timing of high TDG events vs Smolt migration
- Prior Exposure
 - Fish moving through high TDG reservoirs accumulate TDG asymptomatically
 - Bubbles can start forming as shortly after entering the tailwater
 - Mitigating factors become an important consideration
- Fish rearing in tailwaters
 - Given enough time, even low levels of TDG (110-120%) produce high mortality
 - The danger zone is areas <2-3m deep at the tailrace, sloping to zero at 5-10 km
 - Buried eggs are at the least risk (depth compensation, eggshell pressure)
 - The duration of high TDG events becomes an important consideration

TDG and Relative Risk

• The mortality functions can be used to convert TDG to "Relative Risk"

A mortality estimate requires more details on discharge, fish behavior, etc. Similar number of Multi day Events, but shorter, with lower mortality risk

e.g. Mitigating Factor: Seasonal Migration vs Seasonal TDG Timing

Observed Migrant Abundance*

- Migrant abundance is lower in some high risk months
- Seasonal abundance weighted by risk is 29% higher than Average abundance weighted by Risk

Conclusions

- TDG does not appear to be an issue for Chinook or Steelhead migrants in either the N or S Santiam.
 - Migrating fish must keep moving but the required movement rates are well within estimated movement rates of both Chinook and Steelhead smolts
 - High TDG loads acquired in reservoirs prior to dam passage may be an issue
 - Reabsorption of bubbles is relatively rapid (hours, Hans et al 1999, Elston et al. 1997)
 - Bubble formation is slower
 - It is not clear if the amount of dissolved gas stored in a fish at the time of passage is sufficient to generate significant volume of bubbles
- The potential for TDG mortality in rearing/developing fish depends on mitigating factors (seasonal timing, depth compensation)
 - The overlap between the high TDG zone and the quality and quantity of freshwater habitat can be mapped and quantified

Next steps

- Integrate TDG mortality into the life cycle model as a component of juvenile mortality
 - Includes integrating the TDG mortality model from the RST data analysis
 - Resolve the unexpected negative relation of mortality vs TDG in the RST data
- Expected %TDG X Discharge X Season for each operational scenario is the key data input requirement
- Mitigating factors will need to be quantified if significant mortality is predicted for rearing fish
- The "Prior Exposure" methodology requires additional validation*